Class Probability Propagation of Supervised Information Based on Sparse Subspace Clustering for Hyperspectral Images

نویسندگان

  • Qing Yan
  • Yun Ding
  • Yi Xia
  • Yanwen Chong
  • Chun-Hou Zheng
چکیده

Hyperspectral image (HSI) clustering has drawn increasing attention due to its challenging work with respect to the curse of dimensionality. In this paper, we propose a novel class probability propagation of supervised information based on sparse subspace clustering (CPPSSC) algorithm for HSI clustering. Firstly, we estimate the class probability of unlabeled samples by way of partial known supervised information, which can be addressed by sparse representation-based classification (SRC). Then, we incorporate the class probability into the traditional sparse subspace clustering (SSC) model to obtain a more accurate sparse representation coefficient matrix accompanied by obvious block diagonalization, which will be used to build the similarity matrix. Finally, the cluster results can be obtained by applying the spectral clustering on similarity matrix. Extensive experiments on a variety of challenging data sets illustrate that our proposed method is effective.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations

The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...

متن کامل

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

A New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery

Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...

متن کامل

تجزیه‌ ی تُنُک تصاویر ابرطیفی با استفاده از یک کتابخانه‌ ی طیفی هرس شده

Spectral unmixing of hyperspectral images is one of the most important research fields  in remote sensing. Recently, the direct use of spectral libraries in spectral unmixing is on increase. In this way  which is called sparse unmixing, we do not need an endmember extraction algorithm and the number determination of endmembers priori. Since spectral libraries usually contain highly correlated s...

متن کامل

Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms

Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017